Air Second Side Evaporator Coil Design Calculation


Input Table
Quantity Value Unit
Refrigerant -
Refrigerant inlet refrigerant flow rate kg/h
Refrigerant inlet enthalpy(<0: Get by dryness) kJ/kg
Air inlet flow rate kg/h
Air inlet pressure bar
Air inlet temperature °C
Air inlet relative humidity %
Refrigerant inlet dryness(<0: Get by enthalpy)
Refrigerant outlet superheat degree °C
Evaporation temperature at refrigerant inlet °C
Refrigerant outlet dryness(for no superheat)
Tube outer diameter mm
Tube wall thickness mm
Fin wall thickness mm
Fin spacing(LF) mm
Row tube spacing(DH) mm
Face tube spacing(DV) mm
Initial evaporator width(LD) mm
Air speed, 0=Ignore m/s
Coil arrangement, 0=In-line 1=Cross
Rows(NL) along air flow
Circuits number(NB)(<0: See notes)
Number of tubes(NR) per circuit per row
Fin style(0=Straight 1=Slot 2=Triangle wave 3=Sine wave)
Tube material(-1=See notes 0=Copper 1=Steel 2=Aluminum)
Fin material(-1=See notes 0=Aluminum 1=Copper 2=Steel)
In tube heat transfer enhancement
Out tube heat transfer enhancement
In tube pressure drop enlargement
Out tube pressure drop enlargement
Optimize object(0=Weight by tube/fin density 1=Cost)
Tube cost cost/kg
Fin cost cost/kg
Tube material density kg/m3
Tube material conductivity W/(m⋅K)
Fin material density kg/m3
Fin material conductivity W/(m⋅K)
Output Table
Quantity Value Unit
Refrigerant outlet pressure 0 bar
Refrigerant outlet temperature 0 °C
Refrigerant outlet enthalpy 0 kJ/kg
Air outlet flow 0 kg/h
Air outlet pressure 0 bar
Air outlet temperature 0 °C
Air outlet relative humidity 0 %
Air outlet free water content 0 g/kg(d.a)
Refrigerant mass flux 0 kg/(sqm⋅s)
Evaporation ending temperature 0 °C
Refrigerant side flow resistance 0 Pa
Air side flow resistance 0 Pa
Refrigerant inlet dryness when input<0 0
Refrigerant outlet dryness 0
Calculated circuits number when input<0 0
Evaporator width/single tube length 0 mm
Evaporator thickness 0 mm
Evaporator height 0 mm
Air velocity 0 m/s
Heat transfer 0 kW
Heat transfer of evaporation section 0 kW
Heat transfer of superheat section 0 kW
Heat transfer area of refrigerant side 0 sqm
Heat transfer area of air side 0 sqm
Finned-surface weighted efficiency 0 %
Heat transfer coefficient of evaporation in tube 0 W/(m2⋅K)
Heat transfer coefficient of gas section in tube 0 W/(m2⋅K)
Heat transfer coefficient outside tube 0 W/(m2⋅K)
Evaporation section logarithmic mean temperature difference 0 °C
Length of evaporation section 0 %
Length of superheat section 0 %
Refrigerant content 0 kg
Weight/cost (OB=0:Weight,1:Cost) 0 kg/cost
1. No subcooling at refrigerant inlet
2. Input at least one of enthalpy and dryness
3. Input outlet dryness when super heating temperature is 0
4. Material cost: use your local currency such as $/kg
5. Tube and fin material: -1 = input physical properties at bottom
6. Circuits number set to less than 0 to be calculated by evaporator
    width. The absolute number will be initial value